Ricci flat Calabi's metric is not projectively induced

نویسندگان

چکیده

We show that the Ricci flat Calabi's metrics on holomorphic line bundles over compact Kähler--Einstein manifolds are not projectively induced. As a byproduct we solve conjecture addressed in [10] by proving any multiple of Eguchi-Hanson metric blow-up $\mathbb{C}^2$ at origin is

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Ricci-flat metric on D-brane orbifolds

We study issues pertaining to the Ricci-flatness of metrics on orbifolds resolved by Dbranes. We find a Kähler metric on the three-dimensional orbifold C/Z3, resolved by D-branes, following an approach due to Guillemin. This metric is not Ricci-flat for any finite value of the blow-up parameter. Conditions for the envisaged Ricci-flat metric for finite values of the blow-up parameter are formul...

متن کامل

Pseudo Projectively Flat Manifolds Satisfying Certain Condition on the Ricci Tensor

In this paper we consider pseudo projectively flat Riemannian manifold whose Ricci tensor S satisfies the condition S(X,Y ) = rT (X)T (Y ), where r is the scalar curvature, T is a non-zero 1-form defined by g(X, ξ) = T (X), ξ is a unit vector field and prove that the manifold is of pseudo quasi constant curvature, integral curves of the vector field ξ are geodesic and ξ is a proper concircular ...

متن کامل

Constructing Complete Projectively Flat Connections

Theorem 1. Let T 2 be the two dimensional torus. Then for any positive integer m there is a complete torsion free projectively flat connection, ∇, on T 2 such that for any point p ∈ T 2 there is a point q ∈ T 2 with the property that any broken ∇-geodesic between p and q has at least m breaks. Moreover if T 2 is viewed as a Lie group in the usual manner, this connection is invariant under trans...

متن کامل

Ricci-flat supertwistor spaces

We show that supertwistor spaces constructed as a Kähler quotient of a hyperkähler cone (HKC) with equal numbers of bosonic and fermionic coordinates are Ricci-flat, and hence, Calabi-Yau. We study deformations of the supertwistor space induced from deformations of the HKC. We also discuss general infinitesimal deformations that preserve Ricci-flatness.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tohoku Mathematical Journal

سال: 2021

ISSN: ['2186-585X', '0040-8735', '1881-2015']

DOI: https://doi.org/10.2748/tmj.20191211